

Causes of Peak Height Imbalance Single Source Samples

Preferential/differential amplification

RINCIPLES

- any situation where one allele of a heterozygous pair is amplified more often than the second allele at that locus
- resulting in one allele with a peak height higher than the peak height of the other allele

How calculate Peak Height Ratios?

From Validation Studies

- Sensitivity Study at different amounts of DNA
- Non-probative single-source samples with good quality profiles amplified with different amounts of DNA (or at least with different peak height ranges)
- Perform for each kit validated as PHRs may vary for the same locus amplified with different kits

PROTOCOLS

How calculate Peak Height Ratios?

From Casework and Training samples

- Known standards and single-source samples with good quality profiles amplified with different amounts of DNA (or at least with different peak height ranges)
- Database samples (as long as same procedures being used for casework)

ROTOCOLS

How calculate Peak Height Ratios?

• Use sufficient number (N=100-500) and variety of samples to get representative data from each locus, especially for loci with a wide range of alleles and long amplicons (e.g., FGA, D18).

Module 6: Peak Height Ratios

• Export data from GeneMapper *ID*, etc. into Excel table • Calculate PHR (Low RFU peak/High RFU Peak x 100%) for each locus for each sample

- Peak x 100%) for each locus for – In Excel
- NIST worksheet

	P	еак г	Teigi	п ка		ata		
		#	Mean		Median		Percentiles	
Locus	Δbp		x	s(X)	x	s(X)	Min	Max
D13S317	4	103	0.913	0.082	0.930	0.079	0.637	1.000
	8	49	0.879	0.083	0.900	0.091	0.652	0.998
	12	24	0.867	0.079	0.874	0.084	0.639	0.979
	16	20	0.855	0.080	0.847	0.070	0.696	0.997
	20	11	0.828	0.069	0.822	0.067	0.742	0.959
D18S51	4	63	0.878	0.097	0.900	0.100	0.554	0.998
	8	49	0.894	0.100	0.905	0.112	0.704	0.998
	12	44	0.866	0.104	0.876	0.116	0.583	0.997
	16	27	0.872	0.107	0.895	0.119	0.574	0.995
	20	22	0.807	0.100	0.796	0.112	0.644	0.963
	28	10	0.795	0.115	0.785	0.138	0.641	0.936
D8S1179	4	105	0.884	0.082	0.886	0.079	0.683	0.997
	8	61	0.895	0.090	0.908	0.085	0.714	0.990
	12	26	0.857	0.105	0.898	0.099	0.485	1.000
	16	14	0.886	0.088	0.891	0.094	0.620	0.999

Using the data in the previous slide, what single peak height ratio would you select to use?

- 1. 20%
- 2. 50%
- 3. 60%
- 4. 75%
- 5. 90%
- 6. I don't use PHRs

Module 6: Peak Height Ratios

Peak Height Ratio Determine if mixture

Correct answers are # 3 Not enough information or # 4 Not Sure

Need more information from other loci (if available)

http;//www.cstl.nist.gov/biotech/strbase/training.htm

