

GUIDELINE

Peak Height Ratio

SWGDAM Interpretation Guidelines 3.3:

Intra-locus peak height ratios (PHR) are calculated for a given locus by dividing the peak height of an allele with a lower RFU value by the peak height of an allele with a higher RFU value, and then multiplying this value by 100 to express the PHR as a percentage.

Outline for Peak Height Ratios

- GUIDELINES
- SWGDAM Guideline 3.3
- Related SWGDAM Guidelines 3.4.2, 3.5.1, 3.5.2, 3.5.4, 3.5.5,
3.5.6, 3.5.8 (covered later in workshop)
- PRINCIPLES
- Calculation, Causes, Examples
- PROTOCOLS
- Approaches to data collection and calculating
- Review of data
- PRACTICE
- How is this topic applied?

PRINCIPLES	
Peak Height Ratio	
What is PHR?	
At each locus: Peak A RFU (lower RFU peak) X $100=$ PHR\%	
Peak B RFU (higher RFU peak)	
${ }^{\text {[75820 }}$	
${ }^{280}$	1373 RFU X $100=98 \%$
98\%	1404 RFU

PRINCIPLES

Peak Height Ratio What is PHR?

"All things being perfect these two peaks are expected to have the same height" (Buckleton, 2009)

This does NOT apply to loci that are homozygous or to inter-locus ratios.

PHR is not to be confused with stutter percentage cutoff values.

The heights of the peaks will vary from sample-to-sample, even for the same DNA sample amplified in parallel

PRINCIPLES

Causes of Peak Height Imbalance

1. Single-source samples
a. Low Template DNA (LT DNA)
b. Inhibited
c. Degraded
d. Preferential amplification

2. Mixture of DNA from 2 or more contributors is present

PRINCIPLES

Causes of Peak Height Imbalance Single Source Samples

- LT DNA and stochastic effects
- Elevated Stutter - artifact, not true allele
- Unequal sampling of true alleles - the two alleles are not sampled and amplified equally

Causes of Peak Height Imbalance Single Source Samples

- Preferential/differential amplification
- any situation where one allele of a heterozygous pair is amplified more often than the second allele at that locus
- resulting in one allele with a peak height higher than the peak height of the other allele

Causes of Peak Height Imbalance Single Source Samples

- Inhibited - generally a locus shows inhibition relative to another locus, but may see altered peak heights within a locus
- Degraded - the longer allele has a lower RFU peak in a heterozygous pair

Causes of Peak Height Imbalance Single Source Samples

Preferential/differential amplification

- Mutation in the primer binding site of one allele resulting in two peaks of different heights or a single peak with $1 / 2$ the height of a homozygous peak at another locus (with allele drop-out)
- One allele amplicon much longer than other allele amplicon - more common at loci with many alleles and with loci at the right side (i.e., higher bp length) of the profile (e.g., FGA, D18 in Profiler Plus, ID; FGA, Penta E in PP16)
PRINCIPLES
Causes of Peak Height Imbalance
Mixture

2. Mixture of DNA from 2 or more contributors is present

If the PHR is less than what was observed in validation studies, then there is a strong probability that the sample contains a mixture of DNA from 2 or more contributors, especially IF sufficient amount of DNA was amplified and other indications of a mixture are observed

PROTOCOLS

How calculate Peak Height Ratios?

From Casework and Training samples

- Known standards and single-source samples with good quality profiles amplified with different amounts of DNA (or at least with different peak height ranges)
- Database samples (as long as same procedures being used for casework)

PRINCIPLES

Causes of Peak Height Imbalance Mixture

Mixture of DNA from 2 or more contributors is present

9:1 ratio

PROTOCOLS

How calculate Peak Height Ratios?

From Validation Studies

- Sensitivity Study at different amounts of DNA
- Non-probative single-source samples with good quality profiles amplified with different amounts of DNA (or at least with different peak height ranges)
- Perform for each kit validated as PHRs may vary for the same locus amplified with different kits

How calculate Peak Height Ratios?

- Use sufficient number ($\mathrm{N}=100-500$) and variety of samples to get representative data from each locus, especially for loci with a wide range of alleles and long amplicons (e.g., FGA, D18).
PROTOCOLS
How calculate Peak Height Ratios?
- Export data from GeneMapper ID, etc. into
Excel table
- Calculate PHR (Low RFU peak/High RFU
Peak x 100\%) for each locus for each sample
- In Excel
- NIST worksheet

PROTOCOLS								
Peak Height Ratio Data								
			Mea		Med		Perce	iles
Locus	$\Delta \mathrm{bp}$	\#		$s(X)$	X	$s(X)$	Min	Max
D13S317	4	103	0.913	0.082	0.930	0.079	0.637	1.000
	8	49	0.879	0.083	0.900	0.091	0.652	0.998
	12	24	0.867	0.079	0.874	0.084	0.639	0.979
	16	20	0.855	0.080	0.847	0.070	0.696	0.997
	20	11	0.828	0.069	0.822	0.067	0.742	0.959
D18551	4	63	0.878	0.097	0.900	0.100	0.554	0.998
	8	49	0.894	0.100	0.905	0.112	0.704	0.998
	12	44	0.866	0.104	0.876	0.116	0.583	0.997
	16	27	0.872	0.107	0.895	0.119	0.574	0.995
	20	22	0.807	0.100	0.796	0.112	0.644	0.963
	28	10	0.795	0.115	0.785	0.138	0.641	0.936
D8S1179	4	105	0.884	0.082	0.886	0.079	0.683	0.997
	8	61	0.895	0.090	0.908	0.085	0.714	0.990
	12	26	0.857	0.105	0.898	0.099	0.485	1.000
	16	14	0.886	0.088	0.891	0.094	0.620	0.999
PowerPlex 16 data kindly provided by NIST								

Using the data in the previous slide, what single peak height ratio would you select to use?

1. 20%
2. 50%
3. 60%
4. 75%
5. 90%
6. I don't use PHRs

GUIDELINE

PHR Requirements

SWGDAM Interpretation Guideline 3.3.1
The laboratory should establish PHR requirements based on empirical data for interpretation of DNA typing results from single-source samples. Different PHR expectations can be applied to individual loci (e.g., 70\% for D3S1358, 65\% for vWA, etc.); alternatively, a single PHR expectation can be applied to multiple loci (e.g., 60\%).

GUIDELINE

Peak Height Ratio PHR Can Vary

SWGDAM Interpretation Guideline 3.3.1.1

The laboratory may evaluate PHRs at various DNA template levels (e.g., dilution series of DNA). It is noted that different PHR expectations at different peak height ranges may be established.

PROTOCOLS	
Peak Height Rati	
	Most peaks >1500 RFU Most peaks All peaks Power Plex 16 data kindly provided by NIST >8000 alleles

PROTOCOLS
 How calculate Peak Height Ratio?

- Develop SOP interpretation guidelines using these data for making decisions regarding presence of mixtures, degradation, possible inhibition for each kit.
- Use data in conjunction with other validation studies to establish a stochastic threshold and develop mixture interpretation SOPs.

Based on the data in the previous slide, would it be reasonable to use two PHRs one for alleles with peaks <1500 RFU and one for alleles with peaks ≥ 1500 RFU?

1. Yes
2. No
3. Need to think about this more
4. Need more data

GUIDELINE

Peak Height Ratio

SWGDAM Interpretation Guideline 3.3.2

PHR requirements are only applicable to allelic peaks that meet or exceed the stochastic threshold.

PRACTICE
Peak Height Ratio
Determine if mixture

PRACTICE

PRACTICE
Peak Height Ratio
Determine if mixture
Correct answers are
\# 3 Not enough information
or \# 4 Not Sure
Need more information from other loci
(if available)

PRACTICE
Peak Height Ratio
Determine if mixture
Correct answers are
\#3 Not enough information
or \#4 Not Sure
Need more information from other loci
(if available)

PRACTICE

What could NOT be the cause of the observed peak height imbalance?

1. Elevated stutter
2. Degradation
3. Differential amplification
4. Primer mutation
5. Mixture

PRACTICE

PRACTICE	Peak Height Ratio
	Determine if mixture

Could be:
Single-source sample from individual who is heterozygous at that locus, but:

- Primer mutation (uncommon)
- try another kit
- Degraded
- Differential Amplification

- NOT elevated stutter (wrong position)
- Probably NOT LT DNA (good peak heights)

PRACTICE
What information should NOT be used to decide if this is a mixed DNA sample?

1. Validation studies \& PHRs
2. Other loci in the profile
3. Profile from known standard(s) to compare
4. All of the above

Based on PHR and assuming 2 contributors,

 what genotypes are present?1. $11,13+12,12$
2. $11,12+12,13$
3. $11,12+13,13$
4. $11,11+12,12$
5. Can't tell
6. 12,13 and 11 is a stutter peak
7. 11,12 and 13 is a +4 stutter peak

Peak Height Ratio Goals

Understanding of:

- Calculation of Peak Height Ratio
- Causes of peak imbalance
- Why Peak Height Ratios vary

- How to collect data for establishing PHR value
- How to analyze data for establishing PHR value
- Introduction - how to use PHR in mixtures (more later)

